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Review Article 
Vacancy Formation Energy, Liquid Structure 
and Criteria for Liquid-Solid Phase Transitions 

N .  H. MARCH 
Theoretical Chemistry Department, University of Oxford, 
1 South Parks Rd., Oxford OX1 3TG. England. 

(Received 10 October 1986) 

Theoretical models are discussed for close-packed materials which relate vacancy 
formation energy, Debye temperature and melting temperature. Available theory linking 
vacancy energy to melting temperature intimately involves the liquid structure at melting. 
This leads to discussion of three criteria for the solid-liquid phase transition, with 
particular reference to condensed rare gases. Some directions for further investigation are 
proposed. 

Key words: Vacancy formation energy, Debye temperature, melting temperature, 
rare gases. 

1 INTRODUCTION 

Empirical relations between vacancy formation energy E, ,  melting 
temperature T,, and Debye temperature 0 have been known for a long 
time. Although a fully satisfactory theory of these intimate connections 
has yet to be supplied, recent progress has proved possible by direct 
appeal to liquid state properties at the melting point and the aim of this 
brief article is to review this work. 

The outline of the article is as follows. In Section 2 an admittedly 
oversimplified model, based on electron theory, is used to provide 
insight into the way the vacancy formation energy E, may be related to 
the Debye temperature in close-packed metals. Attention is then 
focussed in Section 3 on condensed rare gases, both thermodynamics 
and then liquid state theory being employed to relate E ,  approximately 
to the thermal energy k, T, at melting. This leads naturally in Section 4 
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2 N. H. MARCH 

to the discussion of criteria for solid-liquid phase transitions, with 
reference specifically to condensed rare gases. A summary is provided in 
Section 5, where some directions for further investigation are proposed. 

2 ELECTRON THEORY MODEL RELATING €,, AND 
e FOR CLOSE-PACKED SIMPLE METALS 

To motivate the theory outlined below, Table 1 records the way in 
which E,  for a variety of close-packed metals correlates with the Debye 
temperature 8, following Mukherjee,’ Q being the atomic volume and 
M the ionic mass. 

To gain insight into the origin of this relation, consider an elementary 
free-electron model of a metal of valence 2. Remove an ion at the origin 
by the device of placing there a point charge -2e .  Electrons will be 
repelled from this defect and one will consequently find a screened 
potential energy V(r) describing the vacancy: 

Ze2 
r V(r)  = __ exp( -qr), (2.1) 

where q-’ is the Thomas-Fermi screening radius given by (27r/m,)v, 
with u, the Fermi velocity and up the electronic plasma frequency 
( 4 7 ~ n p ~ e ~ / r n ) ’ ~ ~ ,  po being the conduction electron density. First-order 
perturbation theory using plane waves enables one to calculate the 
change in the sum of the one-electron energies as Q-’JV(r)dr = (;)ZE, 
with E ,  the Fermi energy.* Plainly, this result, being perturbative, is 
strictly valid only for low valency 2. One must next account for the fact 
that in creating a vacancy by removing an atom from the bulk and 
placing it on the surface, one increases the volume occupied by the 

Table 1 Empirical relation between vacancy 
formation energy E ,  and Debye temperature # 
(after Mukherjee’) 

Metal #(K) E,(eV) f3/(E,/MR’’3)1’Z 

c u  245 1.17 32 
Ag 225 1.09 32 
Au 165 0.94 34 

Al 428 0.75 33 
Pb 94.5 0.5 33 
Pt 229 1.4 37 
Ni 441 1.5 33 

Mg 406 0.89 34 
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VACANCIES AND MELTING 3 

conduction electrons by the atomic volume R, if we neglect atomic 
relaxation round the vacancy; a useful approximation only in close- 
packed metals. This reduces the kinetic energy of the conduction 
electron gas, and one finds, following F ~ m i , ~  a decrease of ($)ZE,-. 
Thus, one may write as a first approximation to the vacancy formation 
energy E,:  

E, = (5 - f ) Z E /  = CIZE,- (2.2) 

where in this model CI is simply (&). 
Next one employs a closely related argument to calculate the Debye 

temperature 8, which for an isotropic solid is related to the velocity of 
sound us by4 

One then follows Bohm and in deriving v, by starting from the 
ionic plasma frequency (4npi (Ze)2 /M)’ /2 ,  replacing pi by (po/Z) and, in 
the resulting expression, screening 2 by Fourier transforming Eq. (2.1) 
to get 

(2.4) 
4nZe2 4nZe2 

--*- 
k2 k2 + q2’  

the electrons this time piling up round the ion of charge Z e  to rapidly 
screen out its Coulomb field. In the long wavelength limit k + 0, Eq. 
(2.4) means that 2 is to be replaced in the ionic plasma frequency, after 
substituting pi = (po/Z), by Zk2/q2 ,  which converts an ‘optic’ mode 
into the acoustic mode 

w = u,k, (2.5) 

the above argument leading to the result 

showing that in a metal the velocity of sound is related to the Fermi 
velocity 0,- times a factor of order (m/M)’”.  

The final step in relating E, and 8 is to use Eqs (2.2) and (2.6) to 
eliminate ZE,, to find 

CI-’E, = $ M U : ,  (2.7) 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
4
0
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



4 N. H. MARCH 

which shows that E ,  is basically related to a ‘phonon energy’ Mu:. 
Combining Eqs (2.3) and (2.7) leads immediately to the relation 
exhibited in Table 1 : 

constant E ,  
8=1IJ-(M) 

To recover the constant correctly in Table I, one could choose a, say, in 
Eq (2.2) to be $, rather than f$ given by the above model. 

We reiterate that the above argument has related 6 and E,  by 
studying the response of the free electron gas to (i) the repulsive 
potential (2.1) created by a vacancy and (ii) the attractive potential of a 
(vibrating) ion. Eliminating the response function between 6 and E,, 
and thereby some of the free-electron nature of the model, demonstrates 
the deeper connection of E ,  with a phonon energy in Eqs (2.7) and (2.8). 
To press this latter point, Table 2 records results from non-linear 
electron theory, for essentially the same model as above, due to Stott et 
al.’ for valencies from 1 to 5. The main point to be emphasized here is 
that the first row of this Table shows the non-linear analogue of Eq. 
(2.2). However, Stott et al. correct these results for the self-energy of the 
charge displaced round the vacancy and for exchange (they find 
correlation to be minor in this application), these contributions being 
seen from Table 2 to be large and opposite in sign. Huge cancellation is 
then seen to occur for polyvalent metals, so that the linear model result 
EJZE,  = constant is replaced by the non-linear finding that E,IZE, 
decreases strongly with increasing valency Z ,  as is quite clear from the 
final row of Table 2. 

To lead into the following section, if we use measured melting 
temperatures to form k, T m / Z E f ,  this is found to parallel closely, as a 
function of Z ,  the variation of E, /ZE,  in Table 2. Another way of 

Table 2 Non-linear electron theory results for vacancy formation energy E,, in units of 
Z E ,  (after Stott ef a/.’) 

cu Mg Al Pb Sb 
~~ 

Change in eigenvalue 0.194 0.166 0.156 0.138 0.134 
sum plus kinetic energy 
change 

Exchange energy correction 0.153 0.130 0.098 0.096 0.087 

E ” P E F  0.11 0.09 0.03 0.04 0.03 
Self-energy correction -0.24 -0.21 -0.22 -0.19 -0.19 

~~ 

N.B.  Stott et al.’ estimate errors in last row to range from kO.04 for Cu to about 0.02 
for Sb. 
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VACANCIES A N D  MELTING 5 

expressing this is to note that Lindemann’s law of melting is precisely of 
the same form, when E, in Eq. (2 .8)  is replaced by k,T,. Therefore, in 
Section 3 a quite different approach will be introduced, designed to 
expose such a relation between E ,  and T, in simpler systems than the 
close-packed metals, namely the condensed rare gases. 

3 VACANCY FORMATION ENERGY €, RELATED TO 
kBTm IN CONDENSED RARE GASES 

The writer* has recently studied the relation between the vacancy 
formation energy E,  in crystalline forms of the condensed rare gases 
and departures from Joule’s law in the liquid phase at T,. This work 
was, at least in part, motivated by the fact that a hard sphere system, 
which satisfies Joule’s law since (aU/aV),  = 0, U being the internal 
energy, is totally inadequate for studying E ,  in the hot crystal. 

Starting from the well known thermodynamic formula for the 
difference c p  - c, of the specific heats: 

(3 .1 )  

it is a straight forward matter to express this in terms of pressure p and 
(dU/dV),  since 

the second step in Eq. (3 .2)  following from one of Maxwell’s thermo- 
dynamic relations. Hence Eq. (3 .1 )  becomes 

In order to relate hot solid and liquid properties, which is the basic 
aim below, it is natural to put T = T, and noting that p/pkBTm % 1 one 
finds 

where y = cp/c,  while S(0) is the long wavelength limit of the liquid 
structure factor S(k),  related via fluctuation theory to the isothermal 
compressibility KT = - l / V ( d V / a p ) T  appearing in Eq. (3 .1)  by 

S(0) = p k , T K ,  (3 .5 )  
where p is the atomic number density in the liquid. 
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6 N. H. MARCH 

It is striking that the values of the departure from Joule's law 
represented by Eq. (3.4), namely 9.0,7.1 and 7.2 using empirical data for 
Ne, Ar and Kr9 agree very closely with the experimentally determined 
ratios E,/k,T, which are respectively 9.3,7.2 and 7.3. We shall return to 
this point in Section 4, but let us next link the above thermodynamic 
treatment with the theory of Bhatia and March," which relates the 
same ratio E,/k,Tm for the condensed rare gases with the Ornstein- 
Zermike direct correlation function c(r) of the liquid, together with its 
Fourier transform E(k), at the melting temperature. Their result," 
based on pair potential theory with neglect of relaxation round the 
vacancy, takes the form 

Noting that in the Percus-Yevick solution for hard spheres 

cFy(r = 0) - EPy(k = 0)  = - 1 (3.7) 
it is again clear that the ratio E,/kBT, must reflect very directly 
departures from Joule's law.899 An alternative way of writing Eq. (3.6) is 
to utilize Eq. (3.5) together with the identity 

which follows directly by Fourier transform of the Ornstein-Zernike 
definition of the direct correlation function c(r), when Eq. (3.6) reads 

with B = ( K T ) - '  written for the bulk modulus. If one uses the 
Percus-Yevick hard sphere result 

(3.10) 

where q is the packing fraction (n/6)po3, with the hard sphere 
diameter, together with the empirical fact that at T,, q N 0.45, then it 
follows that the right-hand side of Eq. (3.9) is indeed a large number 
-20 as required by experiment. As in Mukherjee's relation (2.8), 
together with Eq. (2.3), for close-packed metals, E ,  and BR are again 
related, but now via liquid structure and melting temperature. Bernas- 
coni and the writer' have utilized experimental diffraction data on 
some fifteen liquids near the melting temperature T, to confirm that 
{c(r = 0)lTm is usefully approximated by Eq. (3.10) with 1 - 0.45, 
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VACANCIES AND MELTING 7 

whereas it is c"(k = 0) which is very poorly correlated with the hard 
sphere prediction in Eq. (3.7). 

These intimate connections between E,,  BR and k,Tm, displayed 
directly in this and the previous section, prompt us to conclude this 
review by comparing and contrasting criteria for solid-liquid phase 
transitions. More specifically we shall do this in the following section 
for the condensed rare gases while the possible relevance of these 
criteria for other classes of condensed matter will be briefly referred to 
in Section 5. 

4 CRITERIA FOR SOLID-LIQUID PHASE TRANSITIONS 

Of long-standing is Lindemann's criterion which states that crystals will 
melt when the root mean square amplitude of atomic vibration reaches 
a fixed fraction of the lattice spacing. 

Subsequently, a criterion for freezing emerged from the work of 
Verlet on liquids described by Lennard-Jones pair interactions. This 
is now often referred to as the Verlet criterion, which states that simple 
liquids such as Ar will freeze when the principal peak of the liquid 
structure factor reaches a height of about 2.8. Some first-principles 
justification of this is afforded by the density wave theory of freezing 
due to Ramakrishnan and Yu~souff. '~ 

These two criteria, one for melting and the other for freezing, have 
been shown by Bhatia and MarchI4 to be intimately related by the 
property of the pair function g ( r )  of a dense liquid that 

g(r = 0)  = 0 (4.1) 

This relation (4.1) leads to the approximate relation14 

(4.2) S(qm) = constant -; constant N $ 

for the principal peak height, at position qm,  of the static structure 
factor S(q) in terms of the peak width 2Aq defined precisely as the 
distance between the two adjacent nodes of S(q) - 1 which embrace the 
peak position 4,. 

qm 
Aq 

Bhatia and March14 estimate similarly that 

qm r m  --- 
Aq Ar (4.3) 

with entirely parallel definitions of rm and Ar from the pair function 
[ g ( r )  - 11. For example, for liquid Ar at 85 K the left-hand side of Eq. 
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8 N. H. MARCH 

(4.3) is 7.2 while the right-hand-side is 6.7. Using the Verlet criterion for 
freezing, namely S(q,) = 2.8 at T = T, one estimates that (Ar/r,,,),,,, - 
0.1 1 .  But Lindemann’s law of melting, according to Faber,” gives 
(Ar/RA)T, - 0.2, where R, is the mean interatomic spacing given by 
p = 3/(4nRi) and Ar is identified with the root mean square displace- 
ment of the atoms. Since r ,  2: 1.8RA, these results are roughly con- 
sistent. There is no conflict therefore between S(q&,,, = 2.8 on the one 
hand and Lindemann’s law on the other. 

We turn then to the third criterion, stemming from the success of the 
study reported in Section 3 of the relation between departures from 
Joule’s law and the vacancy formation energy in the condensed rare 
gases. This makes it attractive to propose a further criterion for a 
solid-liquid phase transition in these materials. We shall formulate this 
as follows. When the internal energy, E, ,  in the hot crystal, required to 
create a localized hole in the lattice with volume increase equal to one 
atomic volume becomes equal to the increase in internal energy needed 
to expand the liquid by this atomic volume, at the same temperature T,, 
namely U(NR + R) - U(NR) = R(aU/aV),_, then the solid-liquid 
phase transition will occur. 

It was demonstrated in Section 3 that E,/(k,T,) = (R/k,T,) 
(aU/aV),_, confirming the usefulness of the above criterion for the 
condensed rare gases. 

While the criteria of Lindemann for melting, and of Verlet for 
freezing, appear to involve in each case knowledge of the properties of 
only one phase (see, however Ref. 14), the third criterion proposed 
above does have the merit that it directly invokes explicit properties of 
the two phases involved. We shall see, however, in the following section, 
that it must only be applied to a restricted class of materials; and, at 
best, only to those crystals where atomic relaxation round the vacant 
site can be neglected. 

5 S U M M A R Y  AND DIRECTIONS FOR FURTHER WORK 

In this review, theoretical models have been employed to exhibit 
intimate relations between the vacancy formation energy E,, the Debye 
temperature 8 and the melting temperature T,, as required by experi- 
ment. Not altogether surprisingly, liquid structure figures prominently 
in existing theory relating E ,  to T,, as in Eq. (3.4) where the long 
wavelength limit S(0) appears in the formula for (l/(pk, T,) 
(aU/aV),_ = E,/(k,T,) for condensed rare gases, or in the result (3.6) 
of Bhatia and the writer” for the same systems. 
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VACANCIES AND MELTING 9 

That such relations must not be applied non-critically is already 
quite clear by work on metals. Equation (3.6), for instance, rests on the 
use of the mean spherical approximation of liquid state theory which, 
while very valuable in Ar say, is a very poor approximation in liquid 
meta1s.l5 Furthermore, the equating of Eq. (3.4) to E,/(k,T,) is 
crucially dependent on the absence of lattice relaxation round the 
vacancy, and is therefore quite inappropriate for the open body- 
centred-cubic alkali metals, where relaxation energy is a dominant term 
in the calculation of & . I 6  

This prompts the question as to whether the introduction of the 
vacancy formation volume !& into the theory will again allow E ,  in the 
hot crystals to be linked directly with departures from Joule's law in the 
liquid for a much wider class of materials. This is tempting because it is 
known that for Schottky defects in the alkali halides, the vacancy 
formation volumes reflect major relaxation effects.l7-I9 Yet there is still 
an intimate relation between the formation energy of a Schottky defect 
and the melting temperature in these materials; the so-called Barr- 
Dawson-Lidiard relation. A little further from the main theme of this 
article, but relevant in the sense of involving the theory of a liquid in a 
periodic potential, is the relation in the fluorites between the formation 
energy of a Frenkel defect and the superionic transition 
temperature.20*21 Further studies on these Coulomb systems seem very 
worthwhile in the light of the progress reviewed here on monatomic 
metals and condensed rare gases. 
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